
Monatshefte fiir Chemie 127, 375-389 (1996) 
M o n a t s h e ~  ff~r C h e m ~  
Chemical Monthly 
© Springer-Verlag 1996 
Printed in Austria 

Analysis of RNA Sequence Structure Maps 
by Exhaustive Enumeration II. Structures of 
Neutral Networks and Shape Space Covering 

W. Griiner 1, R. Giegerich 2, D.  Strothmann 2, C. Reidys 1 , J. Weber ~ , I. L. Hofacker  3, 
P. F. Stadler 3'4, and P. Schuster 1'3'4'* 

1 Institut fiir Molekulare Biotechnologie, D-07708 Jena, Germany 
2 Technische Fakult~it, Univ. Bielefeld, D-33501 Bielefeld, Germany 
3 Institut fiir Theoretische Chemie, Universit~it Wien, A-1090 Wien, Austria 
4 Santa Fe Institute, Santa Fe, NM 87501, USA 

Summary. The relations between RNA sequences and secondary structures are investigated by 
exhaustive folding of all GC and AU sequences with chain lengths up to 30. The technique of tries is 
used for economic data storage and fast retrieval of information. The computed structural data are 
evaluated through exhaustive enumeration and used as an exact reference for testing analytical results 
derived from mathematical models and sampling based on statistical methods. Several new concepts of 
RNA sequence to secondary structure mappings are investigated, among them the structure of neutral 
networks (being sets of RNA sequences folding into the same structure), percolation of sequence space 
by neutral networks, and the principle of shape space covering. The data of exhaustive enumeration are 
compared to the analytical results of a random graph model that reveals the generic properties of 
sequence to structure mappings based on some base pairing logic. The differences between the 
numerical and the analytical results are interpreted in terms of specific biophysical properties of RNA 
molecules. 

Keywords. Neutral networks; Percolation of sequence space; RNA folding; RNA secondary structures; 
Shape space covering. 

Analyse der Beziehungen zwischen RNA-Sequenzen und Sekundiirstrukturen durch vollstiindige Faltung, 
2. Mitt. Struktur neutraler Netzwerke and Erfassung des Strukturraumes 

Zusammenfassung. Die Beziehungen zwischen RNA-Sequenzen und ihren Sekund~irstrukturen wet- 
den durch vollst~indiges Falten aller GC- und AU-Sequenzen mit Kettenliingen bis zu n = 30 
untersucht. Die aus der Informatik bekannte Technik der Tries wird zur 6konomischen Daten- 
speicherung und f/Jr rasches Retrieval der gespeicherten Information angewendet. Die berechneten 
Strukturdaten werden durch vollst[indiges Abzfihlen ausgewertet. Sie dienen unter anderem als eine 
exakte Referenz zum Testen analytischer Resultate aus mathematischen Modellen sowie zur l~ber- 
prtifung der Ergebnisse statistischer Probennahmen. Verschiedene neuartige Konzepte zur Behand- 
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lung der Zusammenh~inge zwischen RNA-Sequenzen und Sekund/~rstrukturen wurden anhand der 
gewonnenen Daten eingehend untersucht. Unter ihnen befinden sich die Struktur der neutralen 
Netzwerke (die Gesamtheit der RNA-Sequenzen, die eine bestimmte Struktur ausbilden), die Perkola- 
tion des Sequenzraumes dutch neutrale Netzwerke sowie das Prinzip der Erfassun9 des Strukturraumes 
dutch einen kleinen Ausschnitt des Sequenzraumes. Die durch vollst~indiges Abz~ihlen erhaltenen 
Daten werden mit den analytischen Ergebnissen eines auf der Theorie der Zufallsgraphen aufbauenden 
Modells verglichen. Dieses Modell gibt die generischen Eigenschaften von Sequenz-Struktur-Relatio- 
hen wieder, welche lediglich aus der Existenz einer Paarungslogik resultieren. Differenzen zwischen den 
numerischen und den analytischen Resultaten k6nnen als Konsequenzen der spezifischen bio- 
physikalischen Eigenschaften von RNA-Molekfilen interpretiert werden. 

1. Introduction 

Folding complete sets of RNA sequences with given chain length n into secondary 
structures provides previously unknown challenges for theoretical biochemists and 
computer scientists. This approach appears to be feasible only for small chain 
lengths (n ~< 30) and for sequences from two-base alphabets (GC or AU). In 
a previous paper [-1] we presented a novel approach towards data accumulation, 
retrieval, and analysis derived from up to as many a s  10  9 different sequences. Here 
we continue by presenting data obtained from exhaustive enumeration. In section 2, 
we shall investigate internal structures of neutral networks, in particular the 
sequence of components which is tantamount  to the size distributions of connected 
components. The method of tries is applied to the problem of retrieval of the desired 
information from properly ordered sets of folded structures. In addition, the relative 
locations of the components of neutral networks in sequence space will be related to 
biochemical features of the underlying structures. In section 3, we present strong 
evidence for shape space covering: almost all common structures can be found within 
a fairly small ball around any random sequence. The results are particularly valuable 
for a comparison of real data with the predictions of the random graph approach. 

2. The Sequence of Components 

2.1 A19orithmic Considerations 

In modeling the sequence-structure map of RNA secondary structures on the 
computer, we distinguish three levels of abstraction: 

(1) The problem level: sequences, structures, neutral networks, and related notions 
introduced in a previous paper [1]. 

(2) The algorithmic level: lists, graphs, and other data structures representing the 
concepts of the problem level for algorithmic analysis. 

(3) The storage level: machine words and UNIX files for storing the data structures 
of the algorithmic level. 

The correspondence between the problem level and the algorithmic level is the 
content of the formal (mathematical) representation of the underlying biophysics. 
The correspondence between algorithmic and storage level is established by a pair of 
inverse functions that write to and read from background storage. The enormous 
volume of the data in this investigation mandates a careful choice of algorithms and 
data structures. 
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By definition, a neutral network X is a graph with node set { x l f ( x )  = s} and an 
edge between a pair of nodes x and y if they differ by a single character in an unpaired 
position, or by a single switch of complementary characters in paired positions. The 
edges of Jg" cannot be represented explicitly, since the space requirements would be 
excessive. A simple routine n e k g h b o u r ( x ,  y) can decide whether (x, y) is an edge 
according to the above criterion, whereas JV is just represented by its node set as 
a list of sequences. Correspondingly, .W is stored as a UNIX file of consecutive 
machine words. Furthermore, the exhaustive generation of the sequences and 
folding them into structures does not produce immediate neighborhood informa- 
tion. To find the neighbours of x in JV(S) takes (9([JV~(s)[) steps, and so the 
computational  effort for the analysis of connected components of ~ ( s )  is quadratic 
in [~(s)[. Some networks contain millions of nodes; hence, this approach is 
infeasible. 

We now turn to the problem of finding the neighbours of x ~ ( s )  which is the 
basic primitive for determining connected components in a graph. This is a well- 
studied problem in computer science. However, textbook algorithms usually assume 
an explicit representation of edges, such that an edge (x, y) effectively determines the 
neighbour y of x. 

2.1.1. Tries: With ~4 p being a list of nodes, our problem is rather a string processing 
problem, and we can make use of standard string processing techniques [2, 33. 

Definition: A trie I is a rooted tree with edges labeled by characters, such that all 
outgoing edges of a node carry different labels. 

A Btrie of depth n is a trie over a binary alphabet where all paths to a leaf have 
the same length n. Edge labels are optional by the convention that a left branch 
indicates 0, a right branch indicates 1. 

A trie represents a set of strings by its paths read from the root towards the leafs. 
Figure 1 shows two tries. A Btrie of depth n can represent up to 2 n sequences of length 
n. Yet independent of its size, it is decidable in constant time (n steps at most) whether 
some sequence is stored in a trie. Therefore, tries are ubiquitous data structures in 
text processing. Putting together these ideas, a neutral network JV(s) is now 

t 

0 a 1 o I 

y 0 0 1 

Fig. 1. Two examples of tries: a trie for {here, his, their, there} (1.h.s) and a trie for {0000, 0100, 1101, 
1111} (r.h.s) 

1 Trie is an artificial word combined from tree and retrieval; it is usually pronounced to rhyme with pie 
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Table 1. Summary of data representations 

W. Griiner et al. 

Problem level Algorithmic level Storage level 

sequence x 
structure s 
combinatory map f 
neutral network 
X 
edge (x, y) in d 

Sequence of 
components 
C1, C a , . . . ,  C ,  

XE{0, 1} 30 

Se Language(G) 
f o l d  ( ) Algorithm 
(s, t), t Btrie representing 
{ r e d u c e ( s ,  X) IX EM/'} 
implicit if 
d n ( r e d u c e ( s  , x), r e d u c e ( s ,  y)) = 1 

(s, t 1, t2, . . . , t,, to) with 
t~ representing C i as Btrie 
to Btrie of pseudo-component Co 

machine word ~> 32 bits 
ASCII  string 
C-Code 
UNIX file Containing 
(s, writeBtrie(t)) 

UNIX file containing 
(s, writeBtrie(tl), 

writeBtrie(tn), 
writeBtrie (to)) 

represented in the algorithmic model as a pair (s, t), where t is the Btrie representing 
{ r e d u c e ( s , x ) [ x e J U ( s )  }.  

A Btrie representing m sequences of length n can be constructed in (9(mn) steps. 
Although this construction is optimal, it is too expensive to be carried out each time 
the data are read from the disk. Moreover, tries provide a kind of prefix sharing for 
the strings they represent. For example, the trie in Fig. 1 (r.h.s.) represents 4 strings of 
length 4, but has only 13 nodes. Thus, further savings in time and space arise if we 
compactly represent networks as tries on background storage. 

The function wr i t e B t r i e recursively traverses a Btrie in preorder and emits 
0 for a node with two subtrees, 

10 for a node with a left subtree only, 
11 for a node with a right subtree only. 

Leafs produce no output, making use of the fact that all sequences in the Btrie are 
of a known (reduced) length n' (being identical with the depth of the trie), as indicated 
by the corresponding structure. This establishes a linear encoding of a Btrie t in 
a prefix code, and we can easily implement the inverse function r e a d B t r i e  such 
that 

readBtrie(n', writeBtrie(t)) = t. 

For example, let t be the Btrie of Fig. 1 (r.h.s.). We have 

writeBtrie(t)="001011101111100" and readBerie(4,  "001011101111100")= t. 

Table 1 summarizes our algorithmic and storage model of sequence structure maps. 
With these techniques, the total space required for storing all neutral networks is 
reduced from 4.3 GB to 849 MB, an overall reduction of 80%. 

2.1.2. Connected component analysis: Given two sequences x and y in ~A;(s), it is of 
special interest whether there exists a neutral path from x to y. Equivalently, we may 
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remove neighbors and append them to L C 3  C 2  C l  

N(s) l 
save l 5 in Btrie C 3 

Fig. 2. A snapshot from component  analysis; components C1 and C2 are completed, whereas C 3 is 

under  construction; C l . . . .  , C 3, &*, and 2/(s) are disjoint and their union constitutes the original neutral 
network of s; once the components are stored on disk, they are deleted from Y(s)  

ask whether x and y belong to the same connected component of JV(s). Computing 
a complete decomposition of •(s) into a sequence of components, stored as a list of 
Btries, makes available an entire solution for the whole network and furtheron 
a model describing size and quality of components in neutral networks. 

A simple decomposition algorithm starts with the extraction of an initial 
sequence x from J~(s). Finding and removing all neighbors of x from J#(s) is the 
essential part of the computation. This step is detailed below. The neighbors ofx are 
temporarily stored in a list 5 °, whereas the initial sequence x can be saved in a Btrie 
C representing the arising component. Consecutively we take the first element 11 
from 5 °, compute and remove its neighbors from the decreasing J#(s), and append 
them to 5 °. Delete 11 from 50, then repeat the procedure. 

Finding 50 empty stops the procedure with the resulting connected component 
stored in the Btrie C. A complete decomposition of ~A#(s) is achieved by restarting 
the process with new initial sequences and extracting the corresponding compo- 

(1) findrem(1, [],Leaf) = (Empty, [[ ]]); neighbor found and removed. 

(2) f indrem(n, w, Empty) = (Emp£y, []); no neighbors in empty Btrie. 

(3) findrem(O, aw, Node(l, r)) 
= (red ( Node (l', r ')) map ( 0, xs '  ) ++ map (1, ys) ), where 

(l', xs) = findrem(a, w, l) and 

(r', ys) = findrem(1 - a, w, r). 

(4) findremO, 0w, Node(l, r)) = (red(Node(V, r)), map(0, xs)), where 
(l', x8) = findrem(1, w, l). 

(5) fi=drem(1, lw, Node(l, r)) = (~:ed(Node(t, r')), map(l, y~) ), where 
(r', ys) = findrem(l, w, r). 

(6) red(Node(l,r)) ---- [ Empty if l ---- r = Empty 
[ Node(l, r) otherwise. 

(7) map(a, [wl . . . . .  wn]) = law1 . . . . .  aw,~] for n _> 0. 

Fig. 3. Specification of the function f i n d re m  
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nents until X(s)  is empty. We get a sequence C1, C2,..., Ck of components as a list of 
Btries that are stored in the usual way. Space optimization without extra work is 
attained by storing all components consisting of only one sequence in one pseudo- 
component  Co. Finding and removing all sequences neighboring to a sequence 
x is done by the function f ind rem specified by equation 1-7 in Fig. 3. If 
5_ndrera(d, x, t) = (t', [x l , . . . ,  xr]), then dH(x, xi) = d, and t' is the Btrie obtained from 
t by removing x l , . . . ,  x,. 

A sequence x has at most n neighbors, and the effort of finding and removing 
them is (9(n2). For [d(s )  L = m, the complete algorithm is (9(m. n 2) in the worst case. 
For dense networks with m ~ 2", this approaches (9(re-(log re)z), making connectivity 
analysis feasible. 

2.1.3. A remark on programmin9 methodology: Implementing connectivity analysis 
on the computer required close cooperation between biologists and computer 
scientists. Such interdisciplinary work has its own challenges. In the early state, it is 
essential that the mutual understanding is validated and exercised by a quick 
implementation of algorithmic ideas and an exploration of alternatives. In our case 
M i r a n d a  z, a purely functional language, was chosen to prototype the algorithmic 
model. Due to the high level of abstraction, a functional program for the above 
analysis is very short (only 2 pages) and clearly reflects the design decisions. Only 
after our ideas had been tested and their benefits on space and time requirements had 
been demonstrated, the implementation in C was developed. 

2.2. A Sample Session: GC12 

The raw data, represented by an exhaustive list of all sequences contained in different 
files according to their structure, are generated using the command S h a p e S p a c e  

- -  1 12 --g. Here - 1 is an option for the chain length and - g  means generation of 
the raw data. This command creates a hierarchy of directories containing one file for 
each structure. The entries are then sorted and the index file GC_ 12 .  i n d  is created 
in which each line contains the rank of a structure, the size of its preimage, the 
dot-bracket representation of the structure, and the location of the actual data in the 
directory tree. 

The computat ion of the sequence of components is performed using the com- 
mand S h a p e  S p a c e  - 1 12 - d. It requires that the index file has been created first. 
The data are written into a hierarchy of directories such that each directory contains 
no more than 1000 entries. For instance, the data belonging to the structure of rank 
22714 in GC30 with appear in the directory GC_ 3 0 / 3 0 / 2 2 / with filename 714. For 
long chains this presents a formidable task. The computational bottle necks are the 
following: 

(1) CPU resources are crucial for the folding and for the sequence of components 
decomposition. 

2 Miranda is a trademark of Research Software Ltd. 
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(2) M e m o r y  is the  l imi t ing  r e s o u r c e  d u r i n g  the  g e n e r a t i o n  o f  the  r a w  da ta .  

(3) Access  to  d i sk  space  b e c o m e s  a p r o b l e m  in the  case  o f  l o n g e r  s e q u e n c e s  as pa r t i a l  

resu l t s  h a v e  to  be  m o v e d  to  a n d  f ro  f r o m  s c r a t c h  disks.  

T h e  4096 s e q u e n c e s  o f  the  s e q u e n c e  space  G C 1 2  fo ld  in to  31 di f ferent  s e c o n d a r y  

s t r u c t u r e s .  T h e  m o s t  f r e q u e n t  s t r u c t u r e  is t he  o p e n  s t r u c t u r e  '. . . . . . . . . . . .  ' w h i c h  is 

o b t a i n e d  f r o m  a b o u t  1 8 %  o f  all sequences .  T h e  n e u t r a l  n e t w o r k  o f  the  o p e n  

s t r u c t u r e  is e x c e p t i o n a l  in the  case  o f  s h o r t  cha in s  b e c a u s e  it is c o n n e c t e d .  F o r  l o n g e r  

cha ins ,  it d e c o m p o s e s  in to  (at least) t w o  pa tches ,  o n e  o f  w h i c h  is c e n t e r e d  a r o u n d  

poly-G a n d  the  o t h e r  o n e  a r o u n d  poly-C. 

Table 2. Decomposition of the sequence space GC12; Common structures have 
at least [4096/311 = 133 realizations in this example, therefore r C = 13 

Rank Size Sequence 2u 2 v Sequence of 
Components 

1 767 
2 352 
3 349 
4 258 
5 249 
6 247 
7 235 
8 227 
9 179 

10 175 
11 162 
12 161 

13 141 

14 131 

15 84 

16 70 
17 43 
18 41 
19 40 
20 39 
21 31 
22 20 
23 15 
24 14 
25 14 
26 14 
27 13 
28 11 
29 11 
30 2 
31 1 

( ( ( . . . ) ) ) . .  
. . . ( ( (  . . . .  ) ) 
. . ( ( (  . . . .  ))  
. ( ( ( ( . . .  ))  
((((...) )). 

( ( (  . . . .  ) ) . .  
( ( ( (  . . . .  ) ) )  
. ( ( ( . . . )  ) . .  
. . ( ( ( . . .  ) ) .  
.((( ..... ))) 

((( ..... ))). 

. ( ( (  . . . .  ) ) ) .  
( ( (  . . . . . .  ) ) )  
. . . . .  ( ( . . . ) )  
( ( . . . ) )  . . . . .  
.... ((...)). 

.((...))... 

((...)) .... 

..((...)).. 

.(( ...... )) 

.(( ..... )) 

( ........ )) 

( ...... )) 

..... )).. 

....... )) 

..(( ..... )) 

.(( ..... )). 

((  . . . . . . .  ))  
. ( ( . ( . . . ) . )  
((.(...).)). 

0.502 0.000 767 
0.766 0.771 352 
0.762 0.755 349 
0.760 0.514 258 
0.982 0.972 249 
0.978 0.964 247 
0.752 0.468 235 
0.970 0.879 227 
0.572 0.719 92 
0.570 0.697 89 
0.570 0.601 88 

0.559 0.605 89 

0.563 0.548 74 

0.537 0.453 72 

0.429 0.381 63 

0.393 0.286 70 
0.320 0.326 32 
0.378 0.244 21 
0.319 0.300 29 
0.353 0.308 21 
0.468 0.000 31 
0.338 0.000 20 
0.367 0.000 15 
0.304 0.000 9 
0.286 0.000 14 
0.339 0.000 11 
0.250 0.000 7 
0.318 0.000 8 
0.318 0.000 11 
0.167 0.000 2 
0.000 0.000 1 

87 
86 
74 
72 
67 
59 
21 

11 
20 
11 
18 
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The most frequent structures have connected preimages consisting of only one 
(single) component. The neutral networks of the less frequent common structures, 
however, decompose into two components. The reason for this will be discussed in 
the following section. 

2.3. Connectivity in GC30 

An analysis of the sequence of components of GC30 can be used to test the random 
graph theory discussed in section 2.5.4. It predicts that a neutral network corre- 
sponding to a structure with )C, > 1/2 and 2p > 1/2 should form a single connected 
component, at least in the limit of long sequences. Since a chain length of n = 30 is far 
away from this limit, we cannot expect to find a perfect picture. The data show two 
types of deviations from the predicted behavior: 

(1) Many neutral networks consist of one (or a few) large components and a few 
isolated points (or very small components). The overwhelming fraction of 
sequences belongs to the larger components. We can attribute the existence of 
the isolated points and tiny components to finite size effects. 

(2) The splitting of neutral networks in a small number of large components of 
comparable size, however, is not consistent with the prediction of the random 
graph model. In order to explain this behavior, we need to consider structural 
features in some more detail. A few typical examples can be found in Table 3. 

Structures with 2, and 2p above the threshold values show one, two, or four (almost 
equally sized) components when they have none, one, or two structural elements 
that allow to form additional base pairs (Fig. 5). These elements are, for example, 
stacking regions with two dangling ends, hairpin loops with five or more members 
or sufficiently large bulges, internal loops, or multi-loops. Structures with these 

T a b l e  3 .  S e l e c t e d  s e q u e n c e s  o f  c o m p o n e n t s  i n  G C 3 0  

R a n k  S t r u c t u r e  2 ,  2 p  S e q u e n c e  o f  C o m p o n e n t s "  

1 . . . . . . . .  ( ( ( ( ( ( ( ( (  . . . .  ) ) ) ) ) ) ) ) )  0 .860  0 .895  1 5 6 8 4 8 5  

5 . . . . . . . . . .  ( ( ( ( ( ( ( (  . . . .  ) )  ) ) ) )  ) )  0 .614  0 .747  1 3 2 8 6 0 6  

6 ( ( ( ( ( ( ( ( . . . .  ) ) ) ) ) ) ) ) . . . . . . . . . .  0 .611 0 .742  1314205 ,  [-2] 

7 . . . . . . .  ( ( ( ( ( ( ( ( . . . . . . . .  ) ) ) ) ) ) ) ) 0 .666  0 .748  637048 ,  6 0 3 4 3 5  

10 ( ( ( ( ( ( ( ( . . . . . .  ) ) ) ) ) ) ) ) . . . . . . . .  0 .652  0 .751 622112 ,  5 8 3 9 3 4  

50 . . . . . . .  ( ( ( ( ( ( ( ( . . . . . .  ) ) ) ) ) ) ) ) . 0 .570  0 .749  77540,  167420 ,  162767,  157777  

1974  . . . . . .  ( ( . . (  ( ( ( ( ( ( . . . ) ) ) ) ) ) ) . ) )  0 .562  0 .576  118307  

1975 . ( ( ( ( ( ( . . . . . . . .  ) ) ) ) ) . ( ( ( . . . ) ) ) 0 .367  0 .459  33824 ,  31163,  30751,  22388,  [ 1 7 3 ]  

1976  ( ( ( ( . . ( ( ( ( . . . .  ) ) ) ) . ) ) ) ) . . . . . . . .  0 .420  0 .312  117782,  [ 5 1 4 ]  

1983 . . . . . . .  ( ( . ( ( ( ( ( ( . . . . .  ) ) ) ) ) ) . ) ) 0 .360  0 .420  53691,  34137 ,  17123,  12379,  225,  215,  [ 2 4 5 ]  

1984  . . . ( ( ( ( ( ( . . . . .  ) ) ) ) ) ) . . . . . . . . . . .  0 .323  0 .499  I f - l ]  = 117971 i n 4 5 5  c o m p o n e n t s  b 

3 0 3 0  . . ( ( ( ( ( ( . . . . . . . . .  ) ) ) ) ) ) . . . . . . .  0 .305  0 .336  i f - a ]  = 8 8 8 1 1  in 804  c o m p o n e n t s  u 

4 7 2 3  . . ( ( ( ( ( ( . . . . . . . . .  ) ) ) ) ) ) . . . . . . .  0 .286  0 .373  [ f - t l = 5 8 5 8 0 i n  649  c o m p o n e n t s b  

13135  ( ( ( ( . . . . . .  ) ) ) ) . ( ( ( ( . . . . . .  ) ) ) ) . 0 . 2 1 4  0 .246  [ f - l ]  = 13737  in  503 c o m p o n e n t s  b 

D a t a  a r e  t a k e n  f r o m  R e f .  [ 5 ] ;  ~ v e r y  s m a l l  c o m p o n e n t s  a r e  n o t  s h o w n  i n  d e t a i l  h e r e ;  a n u m b e r  i n  s q u a r e  b r a c k e t s  

g i v e s  t h e  t o t a l  n u m b e r  o f s e q u e n c e s  i n  t h e m ;  b a g r a p h o f t h e d i s t r i b u t i o n o f c o m p o n e n t  s i z e s  c a n  b e  f o u n d  i n  R e f .  [ 4 ]  
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Fig. 4. Types of neutral networks in GC30. The color code indicates the "type" of neutral networks, 
depending on the values of2~ and 2 v. Grey: networks consisting of more than 4 large components, and 
very small networks, corresponding to less than 5000 sequences (a component is considered as large in 
this plot if its size is at least 10% of the size of the largest component); red: one (single) component, apart 
from (possibly) a few tiny components; green: essentially two components; blue: three components; 
yellow: four components. If more than one data point falls within a square then the color that appears 
most often is shown 
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elements are very likely to form the additional base pair whenever complementary 
bases are in the appropriate positions. This is more likely to be avoided (and the 
structure in question is more likely to be formed as minimum free energy structure 
from the corresponding compatible sequence) when there is an excess of G or C, 
6 ¢ G or 6 ~ C respectively, in the base composition of the sequence (the G/C ratio 
being significantly different from one). One structural element that  allows to form an 
additional base pair thus implies a bias towards more G or more C in the average 
composition of the sequences just as it is found with the two components in 
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Fig. 5. Large neutral networks can decompose into a small number of components with almost equal 
sizes which differ by their G/C ratio. A neutral network with two components as exhibited by the 
structure with rank 7 (see Table 3) is shown in the upperpart. On the lower half., we present a neutral 
network with four components as found with the structure of rank 50 
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a two-component  neutral network (Fig. 5, upper part). Inspection of Table 3 shows 
that precisely the same types of structural elements are responsible for the appearence 
of two equally sized components also in the case of these very short sequences. 

Two independent structural elements are superimposed in the relative G/C 
content, and thus we have 

c ~ ¢ G & ~ ¢ G ,  c S v e G & c ~ C ,  c ~ : C & c S C G a n d ~ v e C & c ~ ¢ C .  

The first and the last combination show a net G or C bias, whereas compensation 
brings the other two cases back into the middle of sequence space. Exactly this 
distribution of the four components is found by analyzing the data of the reference 
sample GC30. Three components commonly represent a special case of four 
components where the two central components happen to be connected. 

For structures with 2, and 2; way below the critical values we find many 
components  and a characteristically decreasing size distribution of these compo- 
nents (see Fig. 4) as predicted by random graph theory. A more detailed analysis of 
the relationships between the parameters 2 v and 2, and the particular features of the 
corresponding secondary structure graphs will be published elsewhere. 

3. Shape Space Covering 

Extensive computational studies on RNA sequence structure maps [6, 7, 8] provide 
strong evidence for the existence of a neighborhood (represented as a high-dimen- 
sional ball in sequence space) with a radius much smaller than the chain length 
around every random sequence such that this neighborhood contains sequences 
whose structures include almost all common shapes. Full enumeration of a sequence 
space allows us of course to check this conjecture, and provided it is true, to estimate 
the "covering radius". 

To this end we have exhaustively generated all sequences within a ball of radius 
R in sequence space. The covering fraction qo(R,r) is defined as the number of all 
structures with rank not exceeding r encountered within this ball divided by r, the 
rank of the rarest structure under consideration. 

Since the shape space covering conjecture claims that all common structures can 
be found within a small radius R*, the covering fraction q0(R, re) is of particular 
interest. The data shown in the 1.h.s. of Fig. 6 are obtained by averaging (p(R, re) over 
200 balls with randomly chosen midpoints. 

The (p(R, r) plots can be fitted very well by an error function 

1 erf(a(R R*)) q0(e, r) = ~ 

The parameters R* and a correspond to the threshold value and the slope at the 
inflection point which measures the sharpness of the transition. The choice of the 
error function in Fig. 6 is arbitrary. In order to check the robustness of the data with 
respect to the choice of the fitting curve we have used 

exp(a(R - R*)) 
(~(R) - 1 + exp(a(R - R*)) 

as an alternative. The data in Table 4 show a very good agreement of the R* values 
obtained from qo and ~, respectively. 
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Fig. 6. Shape space covering of GC sequences. The covering fraction q~(R, re) for sequences with 

different chain length from n = 30 (leftmost curve) to n = 30 (rightmost curve) is shown on the r.h.s. On 
the 1.h.s., we present the characteristic radius R* as a function of the maximum rank up to which the 
structures are considered. The plot shows results for chain lengths from n = 20 (lowest curve) through 

n = 30 (topmost curve) 

' I 0 0 0 0 0  

The characteristic radius R* will depend on the maximum rank r up to which 
structures are considered. It turns out, however, that only the most frequent 
structures have a drastically reduced value of the characteristic radius R* (see r.h.s, of 
Fig, 6). Since the shape space covering conjecture claims that almost all of the r c 
common structures can be found within a fairly small radius, we refer to the 
characteristic value belonging to r c as the covering radius R. 

Table 4 presents the covering radii /{ for different chain lengths. A linear 
regression yields (0.2627 + 0.0016)n - (1.84 4- 0.04) (p = 0.9998) from ~0 and 
(0.2591 _+ 0.0020)n - (1.74 _+ 0.05) (p = 0.9997) from (p. 

The slopes of both (p and ~5 vary only slowly with n. The data are consistent with 
the logarithmic models ( -0 .5874-0 .015) togn+(0 .252_0.021)  from ~o and 
(-0.782_+0.056)1ogn+(0.538_+0.079) from q~. Thus, the transition becomes 
sharper with increasing chain lengths, at least if one considers the scaled quantity 
R/n. In other words, there is a constant 11' such that, in the limit of large chain 
lengths, we have complete covering if the scaled radius R/n exceeds ~1", whereas only 
a negligible fraction of the structures is covered by balls of size R/n < ~*. The 
constant ~* depends of course on the alphabet in question. For GC, the data shown 
above are consistent with O*c = 0.261 + 0.002. 
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Table 4. Shape space covering radii for GC sequences 

n ~ ~[~] ~[~] ~'(~) ~'(~) 

20 287 3.397 3.471 0.307 0.350 

21 462 3.672 3.680 0.297 0.318 

22 753 3.948 3.948 0.291 0.299 

23 1203 4.228 4.226 0.285 0.288 

24 1867 4.459 4.464 0.278 0.283 

25 2870 4.724 4.724 0.273 0.278 

26 4303 4.984 4.985 0.264 0.269 

27 6373 5.237 5.238 0.258 0.262 

28 9580 5.497 5.497 0.253 0.255 

29 14642 4.759 5.760 0.248 0.251 

30 22719 6.069 6.069 0.240 0.245 

Alternatively, the covering radius can be estimated by measuring the minimum 
distance that is necessary to find a given structure from a chosen starting sequence 
and averaging over the starting sequences and target structures weighted by their 
preimage sizes. An upper bound for this mean covering radius can be obtained from 
computer experiments even for larger chain lengths [7, 9]. 

A lower bound for the covering radius can be estimated as the mean number of 
base pairs separating an arbitrary sequence from one that is compatible with some 
given structure: for a typical structure s with b base pairs, (1 - p)b point mutations 
are needed on average to go from an arbitrary sequence x to a compatible sequence 

Table 5. Lower and upper bounds for shape space covering 
radius; data taken from Ref. [93 

n AUGC GC AU 

30 5.2 6.3 4.3 

50 6.5 9.2 8.5 10.7 6.0 7.0 

70 10.0 13.7 12.5 15.6 9.3 11.5 

100 15.2 20.5 18.6 22.9 14.6 17.3 

Table 6. Alphabet dependence of ~9"; a exhaustive computations are 
not feasible for four-letter alphabets 

Estimate AUGC GC AU 

Lower Bound 0.17 0.20 

Upper Bound 0.220 _+ 0.004 0.238 _+ 0.004 

Enumeration a 0.261 +_ 0.002 

0.17 

0.19 _ 0.01 
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x'sC[s],  where p = (~ / f l )2  is the probability that two random bases can form a base 
pair. 

The covering radii obtained from the exhaustive enumerations (Table 4) and the 
upper bound [-9] (Table 5) are in excellent agreement. Figure 7 shows the chain 
length dependence of the covering radii obtained by the different methods. The slight 
difference between the computed slopes for the upper bound, 0.238 + 0.004, as 
compared to 0.261 from the enumeration results may be due to finite size effects. 

4. Conclusions 

Folding of all RNA sequences into secondary structures and retrieval of information 
by exhaustive enumeration is limited to short chain lengths (n ~< 30) and two-letter 
alphabets (GC and AU) since the numbers of sequences to be handled in these cases 
do not appreciably exceed 109. Even then retrieval of information on more elaborate 
properties like the sequence of components in neutral networks is so demanding 
with respect to computer time and data storage requirements that special methodol- 
ogy is required. The technique of tries is applied successfully, and several issues 
concerning comparisons of data from folding with the results of random graph 
theory could be readily addressed. Examples of such issues are the verification of the 
shape space covering conjecture, the numbers of large components in neutral 
networks, and their distributions in sequence space. Random graph theory predicts 
a single 9iant component. In reality, one, two, three or four large components (of 
almost equal size) were found frequently. The deviations from theory were explained 
by structural features that are inaccessible to the random graph approach. Another 
important issue is the verification of the shape space covering conjecture. It could be 
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shown that shape space covering does indeed occur with short sequences in the 
two-letter alphabets. Moreover, the shape space covering radius obtained by 
exhaustive enumeration agrees very well with a previously derived upper bound 
from structure statistics. 

Exhaustive enumeration is shown to be a highly useful tool for the creation of 
exact reference samples that can be used to verify results obtained from model 
assumptions and to prove conjectures derived from statistical approaches. It has to 
be stressed, however, that it is limited to short chain lengths and to two letter 
alphabets. Otherwise, the numbers of sequences certainly are prohibitive for exhaus- 
tive folding because of two reasons: high demands on computer time and data 
storage capacities. On the other hand, the numbers of (minimum free energy) RNA 
secondary structures are certainly not larger in case they are derived from four letter 
alphabets. We can expect therefore statistical methods to be directly applicable to 
the derivation of results for GCAU sequences analogous to those of exhaustive 
enumeration for GC or AU sequences. These approach again will be confined to 
short sequences. Investigations of longer RNA molecules will require entirely 
different techniques. Investigations along these lines are in progress. 
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